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ABSTRACT
Deep learning technology has made it possible to generate realistic
content of specific individuals. These ‘deepfakes’ can now be gen-
erated in real-time which enables attackers to impersonate people
over audio and video calls. Moreover, somemethods only need a few
images or seconds of audio to steal an identity. Existing defenses
perform passive analysis to detect fake content. However, with the
rapid progress of deepfake quality, this may be a losing game.

In this paper, we propose D-CAPTCHA: an active defense against
real-time deepfakes. The approach is to force the adversary into
the spotlight by challenging the deepfake model to generate con-
tent which exceeds its capabilities. By doing so, passive detection
becomes easier since the content will be distorted. In contrast to
existing CAPTCHAs, we challenge the AI’s ability to create content
as opposed to its ability to classify content. In this work we focus on
real-time audio deepfakes and present preliminary results on video.

In our evaluation we found that D-CAPTCHA outperforms state-
of-the-art audio deepfake detectors with an accuracy of 91-100%
depending on the challenge (compared to 71% without challenges).
We also performed a study on 41 volunteers to understand how
threatening current real-time deepfake attacks are. We found that
the majority of the volunteers could not tell the difference between
real and fake audio.
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1 INTRODUCTION
Adeepfake is anymedia, generated by a deep neural network, which
is authentic from a human being’s perspective [36]. Since the emer-
gence of deepfakes in 2017, the technology has improved in terms of
qualityandhasbeenadopted inavarietyofapplications. Forexample,
deepfake technology is used to enhance productivity [43], education
[29] and provide entertainment [8]. However, the same technology
has been used for unethical and malicious purposes as well. For
example, with a deepfake, anyone can impersonate a target identity
by reenacting the target’s face and/or voice. This ability has enabled
threat actors to perform defamation, blackmail, and social engineer-
ing attacks on companies and individuals around the world [53].
For example, since 2017, the technology has been used to ‘swap’ the
identity of individuals into explicit videos for unethical [18] andmali-
cious [31] reasons. More recently, in March 2022 during the Russian-
Ukraine conflict, a deepfake videowas circulated depicting the prime
minister ofUkraine tellinghis troops togiveupand stopfighting [55].

1.1 Real-time Deepfakes (RT-DF)
Deepfake technology has improved over the last few years in terms
of efficiency. This has enabled attackers to create real-time deepfakes
(RT-DF)a. With an RT-DF, an attacker can impersonate people over
voice and video calls. The danger of this emerging threat is that (1)
the attack vector is not expected, (2) familiarity can be mistaken as
authenticity and (3) the quality of RT-DFs is constantly improving.

To conceptualize this threat, let’s perform the following thought
experiment. Imagine someone receives a call from their mother who
is in trouble and urgently needs a money transfer. The caller sounds
exactly likeher, but the situation seemsabit out of place.Under stress
and frustration, she hands the phone over to someone who sounds
like the victim’s father, who confirms the situation. Without hesita-
tion,manywould transfer themoneyeven though they’re technically
talking to a stranger. Now consider state-actors with considerable
amounts of time and resources. They could target workers at power
plants and other critical infrastructure by posing as their administra-
tors. Over a phone call, they could convince the worker to change a

aExamples of RT-DF tools: https://github.com/iperov/DeepFaceLive
https://github.com/alievk/avatarify-python
https://samsunglabs.github.io/MegaPortraits/
https://www.respeecher.com/
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Figure 1: Overview of the proposed defense: the victim
requests the caller to perform a task which is challenging for
a deepfakemodel to perform. If the response is distorted or
does not contain the task, then the caller is likely a deepfake.

configuration or reveal confidential informationwhichwould lead to
a cyber breach or a catastrophic failure. Attackers could even pose as
militaryofficials orpoliticians leading to abreachofnational security.

These scenarios are plausible because some existing real-time
frameworks can impersonate an individual’s face or voice using very
little information. For example, some real-time methods can reenact
a face with one sample image [14, 46] and some can clone a voice
with just a few seconds of audio [13, 33]. Using these technologies,
an attackerwould only need to call the source voice for a few seconds
or scrape the source’s image from the internet to perform the attack.

1.2 The Emerging Threat of RT-DFs
Threat actors already understand the utility of RT-DFs. This is ev-
ident in recent events where RT-DFs have been used to perform
criminal acts. The first case was discovered in 2019 when a CEO
was tricked into transferring $243k due to an RT-DF phone call [47].
In 2021, senior EuropeanMPs participated in Zoommeetings with
someone masquerading as Russian opposition figures [44]. In the
same year, cyber criminals pulled off a $35 million bank heist involv-
ing RT-DF audio calls to a company director, tricking him to perform
money transfers [10]. In June 2022, the FBI released a warning that
cyber criminals are using RT-DFs in job interviews in order to secure
remotework positions and gain insider information. Then in August
that year, cyber criminals attended Zoommeetings masquerading
as the CEO of Binance [54].

1.3 The Gap in Current Defenses
Manymethods have been proposed for detecting deepfakes [3, 36].
Thesemethods typically use deep learningmodels to either (1) detect
mistakes or artifacts in generated media, or (2) search for forensic
evidence such as latent noise patterns (examples of these works can
be found in section 4). However, there are two fundamental problems
with existing defenses:
Longevity. Methods which identify semantic errors or artifacts
have the assumption that the quality of deepfakes will not signif-
icantly improve. However, it is clearly evident that the quality of

deepfakes is improving and at a fast rate [35]. Therefore, artifact-
based methods have a high potential of becoming obsolete within
a short time-frame.

Evasion. Methodswhich relyon latentnoisepatterns canbeevaded
by applying a post-processor. For example a deepfake can be
passed through a low pass filter, undergo compression or be given
additivenoise.Moreover, theseprocesses are common inaudioand
video calls. Therefore, the attacker may not need to do anything
to remove the forensic evidence in the call.

1.4 Real-Time CAPTCHA
In this paper, we propose Deepfake-CAPTCHA (D-CAPTCHA): a
system for automatically detecting deepfake calls through challenge
response analysis. Instead of passively observing call content, we ac-
tively interact with the caller by requesting that he or she to perform
a task (the challenge). The task is easy for a human to perform but
extremely hard for a deepfake model to recreate due to limitations
in attack practicality and technology. When a deepfake tries to per-
form the task, the resulting content (the response) will be severely
distorted –making it easier for an anomaly detector, classifier, or
even the victim to detect. In addition, we propose using an identity
model and task detectionmodel tomitigate evasion tactics. The iden-
tity model compares the identity of the caller before and during the
response to ensure that the caller cannot turn off the RT-DF during
the task or splice in content from other identities. Similarly, the task
detection model ensures that the caller has indeed performed the
task as opposed to doing nothing.

Existing CAPTCHA systems, such as reCAPTHCA,b challenge
AI to interpret content. In contrast, we propose a systemwhich chal-
lenges AI to create content, with additional constraints on realism,
identity, task (complexity), and time.

In thiswork,wefocusonaudio-basedRT-DFattacks (voicecloning).
We consider audio RT-DFs a more significant threat over video RT-
DFs because it is easier for an attacker to make a phone call than
setup a video call with the victim. Also, their occurrences in the wild
are increasing [4]. Therefore, RT-DF audio calls are arguably a bigger
threat at this time. However, we note that the same D-CAPTCHA
system proposed in this paper can be applied to video calls as well.
In section 9 we present initial results in this domain.

In our evaluation, we collected five state-of-the-art audio RT-DF
technologies. We performed a panel survey to see what the public
thinks about their quality and we evaluated the top twomodels on
our defense and on others as well.We found that ourmethod can sig-
nificantly enhance the performance of state-of-the-art audio-based
deepfake detectors.

1.5 Contributions
In summary, our work has the following contributions:

• Wepropose thefirst active defense against RT-DFs.Compared
to existing artifact-base methods, our approach (1) provides
stronger guarantees of detection than using only passive de-
tection and (2) has better longevity because the challenges
are extensible.

• We define what a D-CAPTCHA is and what constitutes a
strong deepfake CAPTCHA: We identify the limitations of

bhttps://developers.google.com/recaptcha/
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existing RT-DF systems and propose four constraints a chal-
lenge must present to a caller. We also present how these
constraints can be verified in a response both manually and
automatically. We also provide an initial set of CAPTCHAs
and analyze their security and usability.

• We evaluated the quality of five state-of-the-art RT-DF voice
cloningmodelswith 41 volunteers. Doing so enables us to bet-
ter understand the current threatwhich this technologyposes.

• Weprovide thoroughevaluationson(1)howwell theCAPTCHA
system performs and (2) how robust it is against an evasive
adversary.

2 BACKGROUND
In this work, we focus on mitigating the threat of real-time voice
cloning. Furthermore, we focus on methods that perform speech-
to-speech voice conversion (VC) [17, 20, 27, 32, 33, 40] as opposed
to text-to-speech (TTS) methods.

Let 𝑡 be a target identity which we’d like to clone, and 𝑎𝑠 be an
audio clip of identity 𝑠 speaking. Content is the part of speech that
is independent of a speaker’s vocal anatomy (e.g., words, accent,
enunciation, and so on). The objective of voice cloning is to perform
𝑓𝑡 (𝑎𝑠 )=𝑎𝑔 where 𝑎𝑔 is generated audio containing the content of 𝑎𝑠
in the style of 𝑡 . In an attack, 𝑡 is an individual who is familiar to the
victim, and 𝑠 is the attacker (or a voice actor hired by the attacker).

To convert unbounded audio streams in real-time, audio is pro-
cessedas a sequenceof short audio frames (approximately 10-1000ms
each). In this way, the 𝑖-th input frame 𝑎 (𝑖 )𝑡 is converted into 𝑎 (𝑖 )𝑔

withinone second.Weconsider 𝑓𝑡 to be anRT-DF if thepipeline, from
the time the utterance is recorded to the time the converted audio is
played back, can be executed with no more than a 1 second of addi-
tional delay. Longer delaysmay raise the victim’s suspicion.Methods
which process entire recordings all at once form non-casual systems.
Therefore, we do not consider them as RT-DF systems (e.g., [42]).

There are various levels of flexibilitywhen it comes toprior knowl-
edge of 𝑠 and 𝑡 . For instance, not every model can drive 𝑎𝑔 with
content from 𝑠 without prior training on 𝑠 .

3 THREATMODEL
There are two ways an adversary can use the RT-DF 𝑓𝑡 maliciously:
the adversary can (1) call a victim while impersonating 𝑡 or (2) call
a target and threaten to impersonate him. The call may take place
over the phone through a virtual meeting (such as over Zoom). We
refer to these calls as “fake calls”.

3.1 Attack Goals
There are several attack goals which an adversary can achieve using
a fake call:

Cyber attacks. Fake calls can be used in social engineering attacks
(SE). For example, instead of sending spear phishing emails to get
employees to install malware, the attacker can call victims up as
their manager and ask them to do it directly. These SE attacks can
also be used during an adversary’s reconnaissance on an organi-
zation to obtain system information and credentials. For example,
the attacker can call a victim posing as a colleague, asking for help
to login or claiming that he has "forgotten" some information.

Sabotage. An attacker can impersonate a victim’s supervisor in an
attempt to have the victim change some settings or configurations
in a system. For example, in a chemical processing plant, an adver-
sary can use a manager’s voice to tell a worker to urgently alter
the balance of some process –leading to catastrophic results.

Espionage. Fake calls canalsobeusedby state agents as ameans for
extracting sensitive and confidential information. For example, an
adversary can gain a political advantage by posing as a politician’s
assistant and a military advantage by posing as a military official.
Moreover, sensitive documents and source code can be leaked in a
similarmanner if the adversary impersonates a leading figurewho
directly asks employees for this material. Finally, by impersonat-
ing professionals with LinkedIn profiles, an adversary can obtain
remote job interviewswhichmay lead to remoteworkwith a com-
pany –ultimately placing an insider within the organization [15]

Scams. Anattacker canpreyuponpeople and trick them into giving
themmoney. For example, the adversary can impersonate a family
member of the victim to convince the victim that his family is in
danger and needs an urgent money transfer. Similar schemes can
be done on business and banks where the attacker convinces the
victim to make a money transfer under false pretexts [10, 47].

Blackmail. To coerce a victim to perform an action (pay money,
reveal information, ...) an attacker can blackmail the victim using
RT-DF technology. For example, the attacker can speak to the
victim using the victim’s voice and threaten the victim that calls
will be made to reporters, friends, colleagues, or a spouse as the
victim if the blackmail terms are not met (similar to a case that
happened in Singapore [23]).

Defamation. An adversary can defame the victim by performing
embarrassing or unethical acts over calls to the victim’s colleagues
or reporters while masquerading as the victim.

3.2 Attack Setup
The flexibility of the attacker depends on the flexibility of the RT-DF
model. To train themodel 𝑓𝑡 , the attacker canuse one of two common
approaches:
Batch Learning. If the attacker uses conventional learningmodels
such as [20, 27, 32, 40], then they will need to collect a large audio
training set of 𝑡 (typically around 20-30 minutes) and train 𝑓 on
this data. This dataset can be obtained from the internet if 𝑡 is a
celebrity (e.g., interviewsonYouTube).Otherwise, thedatasetmay
be obtained via long phone calls, wiretaps, and secret recordings
(bugs).Thesemodels areusuallyany-to-many,whichmeansonly
the target’s voice must be in the training set, ormany-to-many
which means the source voice must be in the training set as well

Few/Zero-shot Learning. When using methods such as [13, 17,
33], the attacker only needs a few seconds of 𝑡 ’s audio. In this case,
the attacker can make a short phone call to 𝑡 and record his/her
voice, or find short video clips on social media. These types of
models are usually any-to-any, which means they do not require
either the source or target voices to be in the training set, and are
thus the most flexible solution for attackers.

Wenote thatmostmodernRT-DF technologies donot require labeled
data since they are trained in a self-supervised manner [36]. Regard-
ing quality, batch model training methods are typically preferred
over few-shot or zero-shot methods.
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4 RELATEDWORKS
In this section, we will examine the existing literature and services
related to our topic and identify the existing gaps and differences.

4.1 Audio Deepfake Detection Systems
Most audio deepfake detection systems (ADDS) use a common
pipeline to detect deepfake audio: given an audio clip 𝑎, the pipeline
(1) converts 𝑎 into a stream of one or more audio frames 𝑎 (1) ,...𝑎 (𝑛) ,
(2) extracts a feature representation from each frame which sum-
marizes the frames’ waveforms 𝑥 (1) ,...𝑥 (𝑛) , and then (3) passes the
frame(s) through a detector which predicts the likelihood of 𝑎 being
real or fake. The audio features in𝑥 (𝑖 ) are either a Short Time Fourier
Transform (STFT) [56], spectrogram,Mel Frequency Cepstral Coeffi-
cients (MFCC) [24], or the Constant Q Cepstral Coefficients (CQCC)
[30] of 𝑎 (𝑖 ) . Some methods use the actual waveform of 𝑎 (𝑖 ) [48, 49].

With this representation, an ADDS can either use a classifier
[22, 26, 49] or anomaly detector [25] to identify generated audio. A
good summary ofmodernADDS can be found in [3]. In general, clas-
sifiers are trained on labeled audio data consisting of two classes: real
anddeepfake. Byproviding labeleddata, themodel canautomatically
identify the relevant features (semantic or latent) during training.
An intuitive example is the case where a deepfake voice cannot ac-
curately pronounce the letter ‘B’ [1]. In this scenario, the model will
consider this pattern as a distinguishing feature for that deepfake. A
disadvantage of classifiers is that they follow a closed-world assump-
tion; that all examples of the deepfake class are in the training set.
This assumption requires that detectors be retrained whenever new
technologies are released. As for themodel, someworks use classical
machine learning models such as SVMs and decision trees [9, 24, 28]
while themajority use deep learning architectures such asDNNs [56,
58], CNNs [11, 34], and RNNs [5, 45]. To improve generalization to
new deepfakes, some approaches try to train on a diverse set of deep-
fake datasets (e.g., [21]). However, evenwith this strategy, ADDS sys-
tems still generalize poorly tonewaudiodistributions recorded inun-
familiar environments and to novel deepfake new technologies [38].

In contrast to classifiers, anomaly detectors are trained on real
voice data only and flag audio that has abnormal patterns within it.
One approach for anomaly detection is to use the embeddings from
a voice recognition model to compare the similarity between real
and authentic voices [39]. Other approaches use one-class machine
learning models such as OC-SVMs and statistical models such as
Gaussian Mixture Models (GMM) [25, 51, 58].

What’s common with the above defenses is that they are all pas-
sive defenses. Thismeans that they analyze𝑎 but they do not interact
with the caller to reveal the true nature of𝑎. In contrast, our proposed
method is active in that it can force 𝑓 to try and create content it
is not capable of doing. By ‘pressing’ on the limitations of 𝑓 , we
are causing 𝑓 to generate audio with significantly larger artifacts,
making it easier for us to detect using classifiers and anomaly detec-
tion. Our approach also ensures some longevity since the attacker
cannot easily overcome the limitations our challenges pose (further
discussed in section 5.1).

Another advantage of our system compared to others is that we
know exactly where the anomaly should be in themedia stream (due
to the challenge response nature of the CAPTCHA protocol). This
means that our system ismore efficient since it only needs to execute

its models over specific segments and not entire streams (e.g., in
contrast to [7]).

The work most similar to ours is rtCAPTCHA [52]. In this work
the authors perform liveliness detection by (1: challenge) asking the
caller to read out a text CAPTCHA, (2: response) verifying that the
CAPTCHA was read back correctly, and (3: robustness) verifying
that the face and voice match an existing user in a database. The
concept of rtCAPTCHA is that the system assumes that the attacker
will not be able to generate a responsewith the target’s face andvoice
in real-time. However, with the advent of RT-DFs, this rtCAPTCHA
can easily be bypassed since the human attacker can read the text
CAPTCHA back through 𝑓𝑡 . Moreover, our D-CAPTCHA defense
does not require users to register in advance, making the solution
widely applicable to many users and scenarios.

4.2 Fraudulent Call Prevention Services
Existing fraudulent call prevention servicesuseblacklists and statisti-
cal information surrounding a caller’s phone number to identify and
block suspicious calls (e.g., Truecaller, RoboKiller and Nomorobo).
These approaches are only effective against general phishing attacks
where many fraudulent calls are made from the same numbers or
same telephony region. However, in our threat model, we focus on
spear phishing attacks where specific victims are targeted and the
attacks are crafted for those victims. In a spear phishing attack the
caller only needs tomake one call from ‘clean’ phone number once to
achieve his or her goal making existing prevention methods less ef-
fective. In contrast, DF-CAPTCHAmethod (1) examines the content
of the call (i.e., analyzes the caller’s voice) and (2) does not require
any prior knowledge of potential callers (voice identities, phone
numbers, etc.) making it a suitable defence against spear phishing
attacks which use RT-DFs.

5 DEEPFAKECAPTCHAS
In this section we discuss the limitations of RT-DFs and then use
these limitations to define how D-CAPTCHAs work.

5.1 RT-DF Limitations
Current RT-DFmodels can only generate contentwithin the scope of
the task they were trained on. For example, a model trained to reen-
act 𝑡 ’s face in a somewhat frontal position or generate 𝑡 ’s voice in a
calm speaking tonewill not be able to generate other content. This is
evident in facial reenactment models such as [46] and DeepFaceLive.
These models have excellent performance in creating faces with
frontal poses, but they cannot generate the back of the target’s head.
Similarly, for audio-based RT-DFs, it is hard for the model to identify
and then produce certain sounds if the training data, loss functions,
and overall pipeline focus on the perfection of normal speech.

An ideal RT-DFmodel would be able to create content of 𝑡 per-
forming an arbitrary task, where the content is both realistic and
authentic to 𝑡 ’s identity. However, RT-DF models are not ideal be-
cause theyare scoped tospecific tasksduring training.This isbecause
doing so enables the model to perfect the identity and realism in
𝑥𝑔 when driven by 𝑥𝑠 . Therefore, even if out of domain tasks can be
anticipated, 𝑓𝑡 cannot be trained to recreate them all. This is due to
limitations in technology and practicality:
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5.1.1 Technology. This set of limitations relates to the fact that
current technology is not yet capable of creating the ideal RT-DF.
Inference Speed. The rate at which audio frames can be generated
depends on the efficiency of deepfake generation pipeline and the
complexity of the model’s architecture. However, in order to han-
dle a wide variety of different tasks, a model requires significantly
more parametersc and possibly more complex feature extractors
in its pipeline. For example, existing RT-DF models would need
higher resolution STFTs and MFCCs to capture a wider band of
frequencies.

Feature Representation. In order to capture certain patterns in
the input 𝑎𝑠 , a model must extract appropriate feature representa-
tions from the input waveform. Voice tends to use lower frequen-
cies and has a rather consistent spectral envelope compared to
other sounds such as singing and clapping. Existing pipelines use
compressed features such as MFCCs or STFTs with lower sample
rates (e.g., 16-24 KHz [3]). To capture a more dynamic range of fre-
quencies, higher resolution is needed. However, increasing input
resolution generally makes it harder for a model to converge and
increases model complexity.

Training. To train a model, a loss function must be provided to
guide the optimization process. Modern RT-DF systems use at
least two loss functions: one for realism (adversarial loss) and
one for preserving the identity of 𝑡 in 𝑎𝑔 (e.g., perceptual loss)
[36]. If additional tasks are considered, then the model will likely
need additional loss functions to cover each aspect. However, loss
functions compete during optimization and therefore some as-
pects will suffer. Furthermore, adding loss functions can make it
harder for the model to converge. Finally, it’s possible that 𝑎𝑠 may
contain a mix of voice and other audio (e.g., music or some other
voice). To work on this audio, the model would have to convert
the voice component and not the other audio, and then mix the
two components back together in𝑥𝑔 . To the best of our knowledge
this is an open problem.

5.1.2 Resources. This set of limitations relates to cases where the
desired result is achievablewith existing technology, however itmay
be prohibitively expensive or impractical to obtain it.
Data Collection. Tomake a high quality RT-DF of 𝑡 , a significant
amount of audio samples of 𝑡 are required (e.g., [32] requires 20-30
minutes). However, it is impractical for an attacker to obtain audio
of 𝑡 performing specific tasks other than talking. If quality can be
sacrificed, then zero-shot learning could be used. However, there
is still the challenge of (1) gathering an extensive dataset of all
possible tasks and (2) training a model that can generalize the
samples to new identities.

Knowledge. Creating a system that can handle even a subset of
arbitrary tasks requires some in-depth knowledge onmaking gen-
erative deep learning models. This raises the difficulty bar for
casual attackers, but not for advanced adversaries.

Labeling. The process of annotating and labeling large datasets is
expensive and time consuming. This becomes more apparent as
the number of classes (tasks) increases.

cFor example, a state-of-the-art audio-based RT-DF model StarGAN [32] has 53
million parameters whereas models that can make arbitrary content such as DALL-E
2 and Imagen have 3.5-4.6 billion parameters and require multiple passes.

Assets. The ideal RT-DF model would likely be a complex model
to handle the arbitrary tasks. Executing such a model in real-time
would require a powerful GPU. Depending on the model’s com-
plexity, the GPUmay either be prohibitively expensive or simply
non-existent.

5.1.3 Outlook on RT-DF Limitations. We note that the limitations
described in this section apply to existing RT-DF systems. Although
these limitations are hard to overcome, there is no guarantee that
future RT-DF technologies will have the same limitations. However,
we expect that some of the limitations, such as data collection and
training, will still apply to novel systems in the near future.

Therefore, to gain advantage over the adversary, we suggest that
defenses should exploit the limitations of RT-DFswhenever possible.

5.2 D-CAPTCHA
According to [2], a CAPTCHA is “a cryptographic protocol whose
underlying hardness assumption is based on an AI problem.” The pro-
tocol follows the form of a challenge-response procedure between
server𝐴 (the server/victim) and client 𝐵 (the client/caller), where
(1)𝐴 sends challenge 𝑐 to 𝐵, (2) 𝐵 sends response 𝑟𝑐 on 𝑐 back to𝐴,
and (3)𝐴 verifies whether 𝑟𝑐 resolves challenge 𝑐:

(1) 𝐴→𝐵 :𝑐
(2) 𝐵→𝐴 :𝑟𝑐
(3) 𝐴 :𝑉 (𝑟𝑐 ) ∈ {𝑝𝑎𝑠𝑠,𝑓 𝑎𝑖𝑙}

For example, the popular reCAPTCHA prevents bots from perform-
ing automated activities on the web by challenging the client to
perform a human skill which is hard for software but easy for hu-
mans (e.g., decoding distorted letters). In contrast, a D-CAPTCHA
challenges a client by requiring the client to create content with the
following constraints:

(1) Realism: The content must be realistic to a human or a ma-
chine learning model

(2) Identity: The content must reflect the identity 𝑡
(3) Task: The content must have 𝑡 performing an arbitrary task

which is hard to generate
(4) Time: The content must be generated in real-time

Creating a response to this challenge where 𝑉 (𝑟𝑐 ) = 𝑝𝑎𝑠𝑠 is hard
for existing RT-DF technologies but easy for humans. In our system
the ‘hardness’ of the CAPTCHA directly relates to the limitations of
existing RT-DF technology (section 5.1). Moreover, just like modern
CAPTCHA systems, a D-CAPTCHA system can be easily extended
to new limitations of RT-DFs over time. This gives our system the
flexibility to defend against future threats.

5.2.1 Creating a Challenge. A challenge demonstrates whether a
caller can or cannot create content with realism, identity, task and
time constraints.Realism constraints are necessary to ensure there
are no latent or semantic anomalies in the response. Identity con-
straints are needed to ensure that the attacker isn’t just recording
him/herself during the challenge. Task constraints are required to
ensure that the deepfake model tries to operate outside the bounds
of its abilities. Finally, Time constraints are involved to guarantee
that the caller is using an RT-DF model since (1) we don’t want the
caller to switch to an offlinemodel and (2) real-timemodels aremore
limited since they can only process frames and not entire audio clips.
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Table 1: Examples of audio-based tasks which can be used as challenges in a D-CAPTCHA. Strong challenges are hard for the
adversary on all four constraints: realism, identity, complexity and time. Themeasures in this list are based on existing RT-DFs
methods. Playback is where the caller must play some provided audio from his/her phone into themicrophone.

Hardness Weakness Effectiveness
Task (𝑇 ) Acronym Usability Realism Identity Task Time Evasions Naive Attacker Advanced Attacker

Clear Throat CT • • ◦ • • • ◦
Hold Musical Note HN • ◦ ◦ • • • •
Hum Tune HT • • • • • • •
Laugh L ◦ • • • • • •
Mimic Speaking Style MS ◦ • • ◦ • ◦ ◦
Repeat Accent R ◦ • • ◦ • ◦ ◦
Sing S • • • • • • •
Speak with Emotion SE • • • ◦ • • •
Yawn Y ◦ • ◦ • • • •
Blow Noises BN • • − • • bypass • −
Blow on Mic BM ◦ • − • • bypass • −
Clap Cl • ◦ − • • bypass • −
Click Tongue Clk • • − • • bypass • −
Cough Co • • − • • bypass • −
Horse Lips HL ◦ • − • • bypass • −
Knock K ◦ ◦ − • • bypass • −
Playback Audio PA − • − • • bypass • −
Raspberry R • • − • • bypass • −
Sound Effect SFX • • − • • bypass • −
Touch Mic TM ◦ • − • • bypass • −
Type T ◦ • − • • bypass • −
Whistle W − • − • • bypass • −
Talk & Clap T&C ◦ • • • • mix • −
Talk & Knock T&K ◦ • • • • mix • −
Talk & Playback P − • • • • mix • −
Talk with Tones TT • • • • • mix • •
Vary Speed VS • • • ◦ • mix • •
Vary Volume V • • • ◦ • mix • •
•: high, ◦: medium, −: low

The core component of a challenge in our system is the task
which the caller must perform. Let 𝑇 denote a specific task, such
that𝑇 =ℎ𝑢𝑚 might be “hum a specific song”. We define the set of all
possible challenges for task𝑇 as𝐶𝑇 . For example,𝐶ℎ𝑢𝑚 would be
all possible requests for different songs to be hummed. To select a
challenge, (1) randomseeds𝑧0,𝑧1 are generated, (2)𝑧0 is used to select
a random task𝑇 and (3)𝑧1 is used to select a random challenge𝑐 ∈𝐶𝑇 .

In Table 1 we present some example tasks which can be used in
D-CAPTCHA challenges. In the table, we assume that the RT-DF
under test has been trained to have the best performance on one
task; regular talking. Using observations over five state-of-the-art
RT-DF models we assess the hardness, weakness, and effectiveness
of each task as a challenge (see 7.1.1 for details on these five models).
Under hardness, we express the difficulty of a modern RT-DF in
successfully creating a deepfake of 𝑡 given the respective constraints.
For weakness, we state how an adversary can evade detection if the
respective task is chosen. For instance, bypass is where the RT-DF is
turned off and the attacker speaks directly to our system. The other
case ismix is where the attacker canmix other audio sources into 𝑎𝑔 .
For example, to evade ‘talk & clap’ the attacker creates𝑎′𝑔 =𝑎𝑔+𝑎𝑐𝑙𝑎𝑝
where 𝑎𝑐𝑙𝑎𝑝 is taken from another microphone so as not to disrupt
the RT-DF (i.e., execute 𝑓𝑡 (𝑎𝑠 +𝑎𝑚)). Finally, in the table under effec-
tiveness we consider how effective the challenge is given two levels
of attackers: naive and advanced. A naive attacker is one which (1)
will use existing datasets and only a limited number of samples of
𝑡 to train 𝑓𝑡 and (2) forwards all audio through 𝑓𝑡 (e.g., if a library
is used as-is from GitHub). An advanced attacker is one which will
collect a practical number of samples on 𝑡 (e.g., 20 minutes) and is
able to mix other audio sources into 𝑎𝑔 .

Overall, a strong challenge is a random 𝑐 drawn from a random𝑇

which is hard for the adversary to perform given all four constraints.

5.2.2 Verifying a Challenge. To determine whether 𝑉 (𝑟𝑐 ) = 𝑝𝑎𝑠𝑠

or 𝑓 𝑎𝑖𝑙 , we must verify whether 𝑟𝑐 adheres to the realism, iden-
tity,Task, and time constraints. All four constraints can be verified
by a human (a moderator or the victim him/herself). For exam-
ple, if 𝑐 =“say ’I’m hungry’ with anger” but (1) the audio sounds
strange/distorted, (2) the voice does not sound like 𝑡 , (3) the task is
not completed, or (4) it takes too long for the caller to respond, then
thiswould raise suspicion. However,many usersmay not trust them-
selves enough or they may give in to social pretexts and ignore the
signs –to avoid rejecting a peer. Therefore, we propose an automated
way to verify each constraint without prior knowledge of 𝑡 .
To verify 𝑟𝑐 , we validate each constraint separately:

RealismVerification (R). R can be classified using anomaly de-
tectors and existing deepfake classifiers. The output ofR is a score
on the range [0,∞) or [0,1] indicating how unrealistic the content
of 𝑟𝑐 is.

Identity Verification (I). To determine if 𝑟𝑐 has the identity 𝑡 , we
can do as follows: (1) collect a short audio sample 𝑎𝑡 of the caller
prior to the challenge and have the victim acknowledge the iden-
tity, and (2) use zero-shot voice recognition model to verify that
the identity in 𝑎𝑡 and 𝑟𝑐 are the same. The reason we have the vic-
tim acknowledged 𝑡 in𝑎𝑡 is to prevent the attacker from switching
the identity after the challenge. Alternatively, interaction with
the victim can be avoided if continuous voice verification is used
on the caller. However, doing so would be expensive. The output
of I is a similarity score between 𝑎𝑡 and 𝑟𝑐 .
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Figure 2: An overview of the proposed D-CAPTCHA system: (1) Calls are forwarded to the system using a blacklist, whitelist,
policy or the victim’s intuition, (2) a randomD-CAPTCHA 𝑐 with accompanying instructions is generated and send to the caller
as a challenge, (3) the response 𝑟𝑐 is verified against the four constraints (time, realism, identity, task) and if all four pass then
the call is connected/resumed. Otherwise, the call is dropped and evidence is provided to the victim.

Task Verification (C). There are two cases where 𝑟𝑐 would not
contain the requested task: (1) the model failed to generate the
content and (2) the attacker is trying to evade generating artifacts
by performing another task or nothing at all. To ensure that 𝑟𝑐
contains the task, we can use a machine learning classifier. The
output of C is the probability that 𝑟𝑐 does not contain the task.

Time Verification (T ). The time constraint can be verified by en-
suring that the first frame of 𝑟𝑐 is receivedwithin roughly 1 second
after of the challenge’s start time (i.e., after the instructions for 𝑐
are given). The output of T is the measured time delay denoted 𝑑 .
Altogether,wevalidate𝑟𝑐 if noneof the four algorithms (T ,R,I,C)

exceed their respective thresholds (𝜙1,𝜙2,𝜙3,𝜙4) where each thresh-
old has been tuned accordingly. We invalidate 𝑟𝑐 if any model ex-
ceeds its respective threshold. The false reject rate can be tuned by
weighing the contribution of each constraint, however doing so will
compromise the security of the system.

In summary, validation is performed as follows:

𝑉 (𝑟𝑐 )=


𝑝𝑎𝑠𝑠, T (𝑑)<𝜙1,R(𝑟𝑐 )<𝜙2,

I(𝑟𝑐 ,𝑎𝑡 )<𝜙3,C(𝑟𝑐 ,𝑐)<𝜙4
𝑓 𝑎𝑖𝑙, else

(1)

We note that a combination of validation methods for each con-
straint can be used to increase performance, security and usability.
For example, some verifications can be done with humans, some
with algorithms and some with both.

6 DETECTION FRAMEWORK
In this section we present the D-CAPTCHA framework which can
be used to protect users (victims) from fake callers. A summary of
the D-CAPTCHA framework can be found in Fig. 2.

6.1 Initiation
The very first step is to decide which calls should be forwarded to
the system. In high risk settings, D-CAPTCHAmay be used to verify
every caller. However, this is not practical in most settings. Instead,
calls can be forwarded to the system using blacklists (e.g., known
offenders) or policies. An example policy is to forward all callers

who are not in the victim’s address book, or to screen all calls during
working hours.

Alternatively, call screening can be activated by the user. For ex-
ample, if a call arrives fromanunknownnumber, the user can choose
to forward it to the D-CAPTCHA system if the call is unexpected.
Another option is to let users forward ongoing calls if (1) the caller’s
audio sounds strange, (2) the conversation is suspicious, or (3) a
sensitive discussion needs to be made. For example, consider the
scenario where a user receives a call from a friend under an odd
pretext such as “I’m stuck in Brazil and needmoney to get out.” Here,
the user can increase his/her confidence in the caller’s authenticity
after forwarding the call through the D-CAPTCHA system.

Finally, for sensitive virtual meetings (such as over Zoom), the
host can require that all callers first authenticate themselves in the
waiting room prior to joining the meeting.

6.2 Challenge Creation
A random challenge 𝑐 is generated using the approach described in
section 5.2.2. In addition to𝑐 , instructions for the caller are generated.
Instructions include a list of actions to perform and a start indicator.
For example, an instruction might be “at the tone, knock three times
while introducing yourself.” The instruction is then converted into
an audio message using TTS.

At the start of the challenge, the caller is asked to state his/her
name. This recording is saved as𝑎𝑡 and sharedwith the victim for ac-
knowledgment andwithI for identity verification.d Next, the audio
instructions are played to the caller. After playing the instructions,
a tone is sounded. The time between the tone and the first audible
sounds from the caller is measured and included as part of 𝑟𝑐 for T .
After a set number of seconds, the caller’s recording is saved as 𝑟𝑐
and passed along for verification.

6.3 Response Verification
The recorded response 𝑟𝑐 and its timing data are sent to T ,R,C, and
I for constraint verification. If all the algorithms yield scores below
their respective thresholds, then 𝑎𝑡 is played to the user. If the user

dRecall, this is done to prevent attackers from simply turning off the RT-DF during
the challenge and using their actual voice.
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accepts the call with 𝑡 then the D-CAPTCHA is 𝑣𝑎𝑙𝑖𝑑 and the call is
connected / resumed.

If any of the algorithms produce a score above their threshold,
then the call is dropped, and evidence is provided to the user. Evi-
dence consists of an explanation of why the call was not trusted (e.g.,
information on which constraint(s) failed and to what degree) and
playback recordings of 𝑎𝑡 , 𝑐 , and 𝑟𝑐 accordingly.We also note that if
higher security is required, then multiple D-CAPTCHAs can be sent
out and subsequently verified to reduce the false negative rate.

6.4 Deployment
In general, the framework can be deployed as an app on the victim’s
phone or as a service in the cloud. For example, onsite technicians,
bankers, and the elderly can have the system screen calls directly on
their phones. Call centers and online meeting rooms can use cloud
resources to screen callers in waiting rooms (e.g., before connecting
to a confidential Zoommeeting [44, 54]).

6.5 Usability & Limitations
Themain limitations of this system are its applicability and usability.
In terms of deployment, the systemmust be able to interact with the
deepfake so it can only protect against RT-DFs. Moreover, since it is
an active defense, the CAPTCHA protocol runs the risk of becoming
a hindrance to users if not tuned correctly. Regardless, it’s a great
solution for screening callers entering high security conversations
and meetings in an age where calls cannot be trusted. As for usabil-
ity, the system can operate autonomously or manually depending
on the user’s needs. To better understand the usability, the reader
can watch a video demo showing of how the system can be used in
different scenarios.e Finally, the systemuses deep learningmodels in
R,I, andC. Just like other deep learning-based defenses, an attacker
can potentially evade these models using adversarial examples [12].
However, when trying to evade our system, the attacker must over-
come a number of challenges: (1) most calls are made over noisy and
compressed channels reducing the impact of the perturbations, (2)
performing this attack would require real-time generation of adver-
sarial examples, and (3)R,I, and C wouldmost likely be a black box
to the attacker, although not impervious, it cannot be easily queried.

7 THREATANALYSIS
In this section, we assess the threat posed by RT-DFs by evaluating
the quality of five state-of-the-art RT-DF models in the perspective
of 41 volunteers. Our volunteers were university students with an
average age of 25where themajority of themwere not studying com-
puter science related disciplines. Of these volunteers, there were18
were women and 23 were men.

7.1 Experiment Setup
7.1.1 RT-DF Models. We surveyed 25 voice cloning papers pub-
lished over the last three years which can process audio in real-
time as a sequence of frames. Of the 25 papers we selected the four
recent works which published their source code: AdaIN-VC [13],
MediumVC [17] andFragmentVC [33] which are any-to-any models,
and StarGANv2-VC [32] which is an any-to-many model. We also

ehttps://youtu.be/KTQnSiTnh6E

selected ASSEM-VC [27] which is a non-casual any-to-manymodel as
an additional comparison. All works are from 2021 except AdaIN-VC
which is from 2019. A more detailed description of these models can
be found in the appendix.

All audio clips in this experiment were generated using the pre-
trained models provided by the original authors. To simulate a re-
alistic setting, the clips were passed through a phone filter (a band
pass filter on the 0.3-3KHz voice range)[50].

7.1.2 Experiments. To help quantify the threat of RT-DFs, we per-
formed two experiments on a group of 41 volunteers:
EXP1a - Quality. The goal of the first experiment was to see how
easy it is to identify an RT-DF in the best-case scenario (when the
victim is expecting a deepfake).

EXP1b - Identity. The goal of this experiment was to understand
howwell RT-DF models are able to clone identities.
In EXP1a, volunteers were asked to rate audio clips on a scale of

1-5 (1: fake, 5: real). There were 90 audio clips presented in random
order: 30 real and 60 fake (12 from each of the five models). The clips
were about 4-7 seconds long each.

In EXP1b, we selected the top 2 models that performed the best
in EXP1. For each model, we repeated the following trial 8 times:
We first let the volunteer listen to two real samples of the target
identity as a baseline. Thenwe played two real and two fake samples
in random order and asked the volunteers to rate how similar their
speakers sound compared to the speaker in the baseline.

If a model has a positive mean opinion score (MOS) in both EXP1
and EXP2 then it is a considerable threat. This is because it can (1)
synthesize high quality speech (2) that sounds like the target (3) all
in real-time.

7.2 Experiment Results
EXP1a. To analyze the quality (realism) of themodels, we compared
the MOS scores of the deepfake audio to the MOS of the real au-
dio (both scored blindly). In Fig. 3 we plot the distribution of each
model’s MOS compared to real audio. Roughly 20-50% of the vol-
unteers gave the RT-DF audio positive score with StarGANv2-VC
having the highest quality.

However, opinion scores are subjective. Therefore, we need to
normalize theMOS to count howmany times volunteerswere fooled
by an RT-DF. In principle, the range of scores a volunteer𝑘 has given
to real audio captures that volunteer’s ‘trust’ range. Let 𝜇𝑘

𝑟𝑒𝑎𝑙
and

𝜎𝑘
𝑟𝑒𝑎𝑙

be the mean and standard deviation on 𝑘’s scores for real clips.
We estimate that a volunteer would likely be fooled by a clip if he
or she scores a clip with a value greater than 𝜇𝑘

𝑟𝑒𝑎𝑙
−𝜎𝑘

𝑟𝑒𝑎𝑙
.

Using this measure, in Fig. 4 we present the attack success rate
for each of the RT-DF models. We found that StarGANv2-VC has the
highest success rate of 46% percent rate. This means that although
current RT-DF models are not perfect, they can indeed fool people.
We note that these results cannot be interpreted as the likelihood
of a true RT-DF attack succeeding. This is because our volunteers
were expecting to hear deepfakes andwere therefore carefully listen-
ing for artifacts. A true victim would likely overlook some artifacts
especially when put under pressure by the attacker.

EXP1b. To analyze the ability of the models to copy identities,
we normalized volunteer 𝑘’s scores on fake audio by computing
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. Fig. 5 plots the distribution of the normalized scores on

fake audio. We can see that the volunteers were mostly indecisive,
rating some fake clips as more authentic and some as less. For the
majority of cases (𝑠𝑐𝑜𝑟𝑒 >−1) volunteers felt that the identity was
captured well by the top two models.

In summary, there is achronological trendgiven that theworstper-
forming model AdaIN-VC is from 2019 and the best StarGANv2-VC
is from 2021. This may indicate that the quality of RT-DF is rapidly
improving. This raises concern, especially since the volunteers were
expecting the attack yet could not accurately tell which clips were
real or fake. Another insight we have is that the presence of artifacts
can help victims identify RT-DFs. However, as quality improves,
we expect that only way to induce significant artifacts will be by
challenging the model.

8 D-CAPTCHAEVALUATION
In this section, we evaluate the benefit of using a D-CAPTCHA as
opposed to using passive defenses alone.

8.1 Experiment Setup
8.1.1 Datasets. To evaluate our system, we recorded 20 English
speaking volunteers to create both speech and challenge-response
datasets, summarized in Table 3:

(D𝑟𝑒𝑎𝑙 ) 2498 samples of real speech (100-250 random sentences
spoken by each of the 20 volunteers).

(D𝑓 𝑎𝑘𝑒 ) 1821 samples of RT-DF voice conversion. To create this
dataset we used StarGANv2-VC which was the top performing
model from EXP1a. The model was trained to impersonate 6 of
the 20 volunteers fromD𝑟𝑒𝑎𝑙 , and an additional 14 random voice
actors from the VCTK dataset. The additional 14 were added to
help themodel generalize better, and only the 6 volunteers’ voices
were used to make RT-DFs.

(D𝑟𝑒𝑎𝑙,𝑟 ) 3317 samples of real responses (attempts at challenges). A
sample of nine tasks were evaluated in total. The following tasks
were performed 30 times per volunteer: sing (S), hum tune (HT),
coughing (Co), vary volume (V), and talk & playback (P), and the
following tasks were performed 5 times per volunteer: repeat
accent (R), clap (Cl), speak with emotion (SE), and vary speed (VS).

(D𝑓 𝑎𝑘𝑒,𝑟 ) 16,123 deepfake samples of RT-DF voice conversion ap-
plied to the responsesD𝑟𝑒𝑎𝑙,𝑟 using StarGANv2-VC. We did not
convert samples from the same identity (i.e., where 𝑠 =𝑡 )

It took each volunteer over an hour to record their data. The volun-
teers were compensated for their time. For all train-test splits used
in our evaluations, we made sure not to use the same identities in
both the train and test sets.

In addition, we also used public deepfake datasets to train the
realism models R. These datasets were the ASVspoof-DF dataset
[57] with 22,617 real and 15,000 fake samples, and the RITW dataset
[38] with 19,963 real and 11,816 fake samples.

8.1.2 Models. Our system,when fully automated, consists of 3mod-
els: R, C and I. The algorithm T does not use a machine learning
model to verify the time constraint.

For the realism model R, we evaluated five different deepfake
detection models: SpecRNet [22] which is a novel neural network
architecture, inspired by RawNet2 [49], which get results compa-
rable to state–of–the-art models despite a significant decrease in
computational requirements.One-Class [58] is a method adapted
from [37] based on a deep residual network ResNet-18 [19]. They
improve and generalize the network performance using One-Class
Softmax activations.GMM-ASVspoof [57] is a Gaussian mixture
model (GMM) which operates on LFCCs features. This model was
a baseline for the in ASVspoof 2021 competition. PC-DARTS [16]
is a convolutional neural network (CNN) that tries to automatically
learn the network’s architecture. Thiswork also showedgood results
in generalizing to unseen attacks. Finally, we used Local Outlier
Factor (LOF) which is a density-based anomaly detection model.

We took the union of ASVspoof-DF and RITW and selected 80%
at random for training the models and 10% for validation (early
stopping). The models were tested on the baseline scenario (D𝑟𝑒𝑎𝑙
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Table 2: The AUC and EER of deepfake detectors when used as regular deepfake detectors (baseline) andwhen used as R with
the challenges.

AUC Baseline R T&C SE P VS V S HT Co
SpecRNet 0.952 0.914 0.538 0.796 0.825 0.922 0.92 0.834 0.701 0.789
One-Class 0.939 0.952 0.967 0.941 0.954 0.958 0.957 0.948 0.896 0.832

GMM-AsvSpoof 0.949 0.951 0.978 0.953 0.97 0.957 0.949 0.928 0.949 0.833
PC-DARTS 0.551 0.568 0.557 0.611 0.507 0.586 0.579 0.655 0.675 0.635

LOF 0.678 0.614 0.93 0.635 0.756 0.771 0.824 0.593 0.681 0.982

EER Baseline R T&C SE P VS V S HT Co
SpecRNet 0.116 0.163 0.475 0.285 0.261 0.155 0.154 0.245 0.354 0.281
One-Class 0.128 0.123 0.099 0.133 0.118 0.112 0.104 0.128 0.187 0.259

GMM-AsvSpoof 0.122 0.1 0.071 0.099 0.09 0.092 0.115 0.143 0.131 0.255
PC-DARTS 0.449 0.418 0.494 0.386 0.494 0.43 0.437 0.366 0.334 0.415

LOF 0.326 0.419 0.122 0.412 0.262 0.301 0.26 0.38 0.382 0.051

andD𝑓 𝑎𝑘𝑒 ) and our proposed D-CAPTCHA scenario (D𝑟𝑒𝑎𝑙,𝑟 and
D𝑓 𝑎𝑘𝑒,𝑟 ).

For the task model C, we trained a GMM classifier on the MFCC
features using the baseline model from [57]. One model was trained
per task: to classify between real responses from that task and all
other tasks as well as speech. A 70-30 train-test split was used.

For the identity modelI, we used a pre-trained voice recognition
model from the SpeechBrain toolkit [41]. Themodel uses the ECAPA-
TDNN architecture to classify a speaker. Since we do not want I to
have prior knowledge of 𝑡 , we converted the model into an anomaly
detector. Recall that we obtain a voice sample𝑎𝑡 from the caller prior
to the challenge. This sample is used as a reference to ensure that the
RT-DF is not turned off during the challenge. To detect whether the
identity of the caller has changed during the challenge, we compute

I(𝑎𝑡 ,𝑟𝑐 )= | |𝑓 ∗ (𝑎𝑡 )− 𝑓 ∗ (𝑟𝑠 ) | |2 (2)
where 𝑓 ∗ is the speaker encoding, taken from an inner layer of the
speech recognitionmodel. Smaller scores indicate similaritybetween
the voice before the challenge and during the challenge. This tech-
nique of comparing speaker encodings has been done in the past
(e.g., [36, 39]). To evaluate I, we create negative pairings as samples
from the same identity (𝑎𝑖 ,𝑟𝑐,𝑖 ) and positive pairings as samples from
different identities (𝑎𝑖 ,𝑟𝑐,𝑗 ), where 𝑎𝑖 ,𝑎 𝑗 ∈D𝑟𝑒𝑎𝑙 , 𝑟𝑐,𝑖 ,𝑟𝑐,𝑗 ∈D𝑟𝑒𝑎𝑙,𝑟

and 𝑖≠ 𝑗 .

8.1.3 Experiments. We performed four experiments:

EXP2a R: A baseline comparison between existing solutions (pas-
sive) and our solution (active) in detecting RT-DFs. For this pur-
pose, we will compare the performance of different deepfake de-
tectors on 1) detecting regular deepfake speech (baseline) and on
(2) detecting deepfake challenges.

EXP2b C: An evaluation of the task detectionmodel which ensures
that the caller indeed performed the challenge.

EXP2c I: An evaluation of the identity model which ensures that
the caller didn’t just turn off the RT-DF for the challenge.

EXP2d R,C,I: An evaluation of the system end-to-end to evaluate
the performance of the system as a whole.

We do not evaluate T because it is just a restriction that the
first frame of the response 𝑟𝑐 be received within approximately one
second from the start time of the challenge.

Tomeasure the performance of the models, we use the area under
the curve (AUC) and equal error rate (EER) metrics. AUCmeasures

Table 3: The number of samples in each of our datasets
Real:D𝑟𝑒𝑎𝑙 Fake:D𝑓 𝑎𝑘𝑒

Speech 2498 1821

Real:D𝑟𝑒𝑎𝑙,𝑟 Fake:D𝑓 𝑎𝑘𝑒,𝑟

Repeat Accent (R) 98 570
Clap (Cl) 99 551

Cough (Co) 537 3,401
Speak with Emotion (SE) 98 532

Hum Tune (HT) 593 3,325
Playback Audio (P) 601 3,420

Sing (S) 595 334
Vary Speed (VS) 98 570
Vary Volume (V) 598 3,420

Real Fake
ASVspoof-DF 22,617 15,000

RITW 19,963 11,816

the general trade-off between the true positive rate (TPR) and the
false positive rate (FPR). An AUC of 1.0 indicates a perfect classifier
while an AUC of 0.5 indicates random guessing. The EER captures
the trade-off between the FPR and the false negate rate (FNR). A
lower EER is better.

8.2 Experiment Results
EXP2a R: In Table 2, we compare the performance of the five deep-
fake detectors. The bold values indicate challenges that improved
the performance of the corresponding model. We see that with
the exception of SpecRNet, all of the detectors benefit from exam-
ining challenges. Overall, the best performing model was GMM-
ASVspoof with the challenges. This means that the challenges
provide a better way to detect RT-DFs.

EXP2b C: In Fig. 6, we show the task detector C can tell whether
the task was performed or not with high certainty.

EXP2c I: In Fig. 7 we present the results of the identity detector I.
Herewe can see that themodel does quitewell, with the exception
of the tasks ‘hum’ and ‘cough’ which do not carry much of the
speaker’s identity.

EXP2d R,C,I: Finally, when executing all three models, we must
consider how the successes and failures of each model compound
together. We set the threshold for each model (R,I,C) so that the
FPR=0.01. We then passed through 3,317 real responses and 8,758
deepfake responses. Fig. 8 presents the results. We found that we
were able to achieve a TPR of 0.89-1.00. FPR of 0.0-2.3 and accuracy
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Figure 6: The performance of the task detectionmodel C.
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Figure 7: The performance of the unsupervised identity
detectionmodel I for different tasks.
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Figure 8: The performance of the ensureD-CAPTCHAsystem
(end-to-end).
of 91-100% depending on the selected task. In contrast, the model
which performed the best on deepfake speech detection (baseline)
was SpecRNet with a TPR of 0.66 and accuracy of 71% when the
FPR=0.01. Therefore, D-CAPTCHA significantly outperforms the
baseline and provides a good defense against RT-DFs audio calls.

9 FUTUREWORK: VIDEOD-CAPTCHA
As mentioned in the introduction, the same D-CAPTCHA system
outlined in this paper can be applied to video-based RT-DFs as well.

For example, to prevent imposters from joining online meetings
(such as the cases in [44, 54]) we can forward suspicious calls to a D-
CAPTCHA system. There are a wide variety of tasks which existing
models andpipelines cannothandle for similar reasons to those listed
in section 5.1. For example, the caller can be asked to drop/bounce
objects, fold shirt, stroke hair, interact with background, spill water,
pick up objects, perform hand expressions, press on face, remove
glasses, turn around, and so on. These tasks can easily be turned into
challenges to detect video-based RT-DFs.

To demonstrate the potential, we have performed some initial
experiments and will now present some preliminary results. In our
experiment we used a popular zero-shot RT-DFmodel called Avatar-
ifyf based on the work of [46] to reenact (puppet) a single photo. We
were able to achieve a realistic RT-DF video at 35 fps with negligible
distortions if the face stayed in a frontal position. However, whenwe
performed some of the mentioned challenges, the model failed and
large distortions appeared. Fig., 10, which can be found at the appen-
dix, presents some screenshots of the video during the challenges.

These preliminary results indicate that D-CAPTCHAs can be a
good solution for both RT-DF audio and video calls.

10 CONCLUSION
Deepfakes are rapidly improving in terms of quality and speed. This
poses a significant threat as attackers are already using real-time
deepfakes to impersonate people over calls. Current defenses use
passive methods to identify deepfakes via their flaws. However, this
approachmay have limits as the quality of deepfakes continues to ad-
vance. Instead, in this work we proposed an active defense strategy:
D-CAPTCHA. By challenging the attacker to create content under
four constraints based on practical and technological limitations, we
can force the deepfakemodel to expose itself. By protecting calls and
meetings from deepfake imposters, we believe that this system can
significantly improve the security of organizations and individuals.
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A ETHICALDISCLOSURES
The experiments performed in this study have received our institu-
tion’s ethical committee’s approval. All 20 volunteers whose voices
were used to create deepfakes permitted the use of their data for this
purpose. To protect our volunteers, the trained RT-DF voice models
will not be shared.

B ADDITIONAL FIGURES

Figure 9: Examples of the Avatarify zero-shot RT-DFmodel
working as expected. Here there are no significant anomalies
because the caller has a frontal pose and is talking normally.

C DEEPFAKEMODELS
StarGANv2-VC is many-to-many model which also works as an

any-to-many model. The audio 𝑎𝑔 is created by passing the
spectrogram of 𝑎𝑠 through an encoder-decoder network. To
disentangle content from identity, the decoder also receives
an encoding of 𝑎𝑠 taken from a pretrained network which
extracts the fundamental frequencies. Finally, the decoder
receives reference information on 𝑡 via a style encoder using
sample 𝑎𝑡 .

ASSEM-VC works in a similar manner except 𝑎𝑠 and a TTS tran-
script of 𝑎𝑠 are used to generate a speaker independent repre-
sentation before being passed to the decoder, and the decoder
receives reference information on 𝑡 from an identify encoder.

AdaIN-VC , 𝑎𝑔 is created by disentangling identity from content.
Themodel (1) passes a sample 𝑎𝑡 through an identity encoder,
(2) passes a source frame 𝑎 (𝑖 )𝑠 through a content encoder
with instance-normalization, and then (3) passes both out-
puts through a final decoder.

MediumVC , 𝑎𝑠 first normalizes the voice by converting it to a
common identity with an any-to-one VCmodel. The result is

then encoded and passed to a decoder along with an identity
encoding (similar to AdaIN-VC).

FragmentVC , extracts the content of𝑎𝑠 usingaWav2Vec2.0model
[6] and extracts fragments of 𝑎𝑡 using an encoder. A decoder
then uses attention layers to fuse the identity fragments into
the content to produce 𝑎𝑔 .
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Figure 10: Preliminary results showing how the D-CAPTCHA system can help prevent RT-DF video calls. Here a zero-shot
reenactmentmodel called Avatarify breaks themoment the caller performs an action other than basic expressions and talking.
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Figure 11: The performance of I when two challenges are requested, measured in AUC.
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Figure 12: ROC plots for each deepfake detection model from experiment EXP2a. The bold line shows the baseline (regular
deepfake detection) and the others show the performance on the given task.
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